[转载]怎么简单理解贝叶斯公式

作者:李现民
链接:https://www.zhihu.com/question/51448623/answer/147298455
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

贝叶斯公式与两个概率有关系,一个是先验概率(基础概率),一个是现象概率(观察到的条件)

例子:某城市发生了一起汽车撞人逃跑事件,该城市只有两种颜色的车,蓝色15%,绿色85%,事发时有一个人在现场看见了,他指证是蓝车。但是根据专家在现场分析,当时那种条件能看正确的可能性是80%。那么,肇事的车是蓝车的概率到底是多少?

令B是城市里车为蓝色的事件,G为车子是绿色的事件,E为观察到车子为蓝色的事件。则由已知条件可以得出P(B)=0.15,P(G)=P(~B)=0.85,至于P(E)我们一会儿再说。

好了,现在,如果没有证人看到肇事者车的话,那么我们只能盲猜,因此肇事者的车子为蓝色的概率只能是整个城市里面车为蓝色的概率,也就是先验概率P(B)=0.15,因为这时我们还没有其他证据介入,只能做个粗略的估算。

接下来,当当当当,有证人了。证人说他看到了车子,并且说是蓝色的,注意,这分两种情况,…………重要的事情说两遍:贝叶斯里面现象(新的证据)部分总是分两种情况出现的:一是车子的确是蓝色的,并且证人也正确的分辨出车是蓝色的来了,概率为 P(E,B)=P(B)xP(E|B)=0.15×0.8=0.12,二是车子根本就是绿色的,只是证人看成蓝色的了,概率为P(E,~B)=P(~B)xP(E|~B)=P(~B)x(1 – P(~E|~B))=0.85x(1-0.8)=0.17,所以P(E)=P(E,B)+P(E,~B)=0.12+0.17=0.29

 

然后,我们要求解的其实是在有证人的条件下车子为蓝色的概率,也就是P(B|E)=P(E,B)/P(E)=0.12/0.29=0.41

你看,P(B|E)根本就是P(B)的加强版本,条件概率跟先验概率描述的根本就是同一件事。那么当当当当,又一个结论来了:当有新的证据出现时,P(B|E)会替代原来P(B)的角色。换句话说,现在警察找到了一个新的证人,他也觉得这辆肇事车是蓝色的,这时在新一轮的贝叶斯概率计算中,基础概率P(B)=0.41,而不是原先的0.15,大家可以算一下,新的P(B|E)=0.73,换句话说,当有两个人看见肇事车辆为蓝色的时候,对比只有一个人看到肇事车辆为蓝色的时候,该车实际为蓝色的概率大大增加

关于贝叶斯,写过一篇文章专门详述了相关的内容,可以参考链接:

lixianmin/cloud