[tensorflow] 设计思想简要理解

使用TensorFlow的时候,你需要理解的一些tensorflow问题:
怎么用图表示计算;
在Session里面计算图;
用tensor表示数据;
用变量保持状态;
用feeds(联系placeholder)和fetches来从任意的操作(Operation)中“放入”或者“拿出”数据。
再回忆一下tensorflow的思想:首先是构造过程来“组装”一个图,然后是执行过程用session来执行图中的操作(ops)。那么下面就用一个综合的例子联系之前对于各个类的分析来加强一些对于tensorflow基础的理解。

例子1:常量和图

# -*- coding: utf-8 -*- 

from __future__ import print_function,division
import tensorflow as tf

#building the graph

'''
创建一个常量操作(op)产生 1x2 矩阵,这个操作(op)作为一个节点添加到默认的图中,但是这里这个矩阵并不是一个值,而是一个tensor。
创建另外一个常量操作产生一个1x2 矩阵(解释如上)
'''
mat1=tf.constant([3.,3.],name="mat1")
mat2=tf.constant([4.,4.],name="mat2")

#matrix sum.
s=tf.add(mat1,mat2)

'''
这个默认的图(grapg)现在已经有3个节点了:两个constant()操作和一个add()操作。为了真正的得到这个和的值,你需要把这个图投放到一个session里面执行。
'''

# Launch the default graph.
sess = tf.Session()

'''
为了得到和的值,我们要运行add 操作(op),因此我们在session里面调用“run()”函数,把代表add op的输出结果s传到函数里面去。表明我们想从add()操作得到输出。
'''
result=sess.run(s)
print("result:",result)

# Close the Session when we're done.
sess.close()

输出结果:

result: [7. 7.]

分析:注意注释列明的几个关键操作

另一种自动关闭session的写法:

with tf.Session() as sess:
  result = sess.run([product])
  print(result)

例子2:tensor和变量

代码示例:

# -*- coding: utf-8 -*- 

from __future__ import print_function,division
import tensorflow as tf

#building the graph

#Create a Variable, that will be initialized to the scalar value 0.
state=tf.Variable(0,name="state")
print("the name of this variable:",state.name)

# Create an Op to add 1 to `state`.
one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)

# Variables must be initialized by running an `init` Op after having
# launched the graph.  We first have to add the `init` Op to the graph.
init_op = tf.global_variables_initializer()

# Launch the graph and run the ops.
with tf.Session() as sess:
  # Run the 'init' op
  sess.run(init_op)
  # Print the initial value of 'state'
  print("The value of state=[%s]" %(sess.run(state)))
  # Run the op that updates 'state' and print 'state'.
  for _ in range(3):
    sess.run(update)
    print("value of state:",sess.run(state))

输出结果:

the name of this variable: state:0
The value of state=[0]
value of state: 1
value of state: 2
value of state: 3

例子3: fetches和feeds

fetches表示一种取的动作,我们有时候需要在操作里面取一些输出,其实就是在执行图的过程中在run()函数里面传入一个tensor就行,然后就会输出tesnor的结果,比如上面的session.run(state)就可以当做一个fetch的动作啦。当然不仅仅限于fetch一个,你也可以fetch多个tensor。

feed我们知道是喂养的意思,这个又怎么理解呢?feed的动作一般和placeholder()函数一起用,前面说过,placeholder()起到占位的作用(参考前面的placeholder()函数),怎么理解呢?假如我有一个(堆)数据,但是我也许只知道他的类型,不知道他的值,我就可以先传进去一个类型,先把这个位置占着。等到以后再把数据“喂”给这个变量。

代码示例:

# -*- coding: utf-8 -*- 

from __future__ import print_function,division
import tensorflow as tf

#fetch example
print("#fetch example")
a=tf.constant([1.,2.,3.],name="a")
b=tf.constant([4.,5.,6.],name="b")
c=tf.constant([0.,4.,2.],name="c")
add=a+b
mul=add*c

with tf.Session() as sess:
    result=sess.run([a,b,c,add,mul])
    print("after run:\n",result)

print("\n\n")

#feed example
print("feed example")
input1=tf.placeholder(tf.float32)
input2=tf.placeholder(tf.float32)
output=tf.multiply(input1,input2)

with tf.Session() as session:
    result_feed=session.run(output,feed_dict={input1:[2.],input2:[3.]})
    print("result:",result_feed)

运行结果:

#fetch example
after run:
 [array([1., 2., 3.], dtype=float32), array([4., 5., 6.], dtype=float32), array([0., 4., 2.], dtype=float32), array([5., 7., 9.], dtype=float32), array([ 0., 28., 18.], dtype=float32)]

feed example
result: [6.]

 

本篇笔记主要参考自:http://blog.csdn.net/xierhacker/article/details/53103979

 

 

Leave a Reply

Your email address will not be published.